Milestone Two Progress Evaluation

Project Title: Student Code Online Review and Evaluation 2.0
Names and email addresses of team members:

Dorothy Ammons dammons2022@my.fit.edu

Patrick Kelly pkelly2022@my.fit.edu

Shamik Bera sbera2022@my.fit.edu

Rak Alsharif ralsharif2021@my.fit.edu

Faculty advisor from CSE: Raghuveer Mohan, rmohan@fit.edu
Client name and affiliation: Raghuveer Mohan, CSE Professor

Task Dorothy Patrick Shamik Rak To Do
1. Replace 80% 0% 0% 0% Finish
frontend/backend endpoints
with Flask and for
Firestore processing
test cases
2. Replace rust 0% 10% 70% 0% Create the
server with Python CLI Client
file
3. Add Al detection | 0% 0% 0% 5% Add the
page to website buttons and
without page(s) for
functionality the Al
detection
4. Create and test | 0% 0% 0% 90% Continue
LLM for Al refining
detections accuracy
and model
evaluation
5. Create visuals 0% 0% 0% 30% Create
for Al detections visuals from
the LLM
results

6. Built and tested | 0% 100% 0% 0%
MOSS integration
with Matrix

Integrate into
grading
pipeline for
Milestone 3
and connect
to frontend for
visualization

mailto:dammons2022@my.fit.edu
mailto:pkelly2022@my.fit.edu
mailto:sbera2022@my.fit.edu
mailto:ralsharif2021@my.fit.edu
mailto:rmohan@fit.edu

Tasks

Task one:

For task one, we aimed to transfer the system to something sustainable for server
hosting. This involved switching the old Node.js and MongoDB backend with Flask and
Firebase. These steps are necessary in order to host the server reliably on a system such as
Google Cloud Run. Each endpoint in the backend was replaced with Flask API operations and
data was migrated away from MongoDB and to Firestore database API / Google cloud buckets.

Task two:

For task two, we needed to set up the CLI Client file to interact with the Google Cloud
Run server from the command line terminal. This involves creating the commands to be run in
the terminal and connecting the commands to backend endpoints.

Task three:

For task three, we wanted to create some basic buttons or pages for our Al detection
functionality. We believe adding the space for the functionality will make connecting the LLM
easier later.

Task four:

For task four, we chose to create and test the LLM for Al detection. This LLM needs to
take in code as an input and output a statistic in how likely the code was to be generated by Al.
Testing is crucial and the predictions need to be as accurate as possible. The LLM will be used
by professors through the SCORE (2.0) application to notify them of Al usage in assignments.

Task five:

For task five, we needed to decide how the data from the Al detections would be shown
to professors. This includes integrating customizable thresholds for displaying the data as well
as a graphical interface for the web application.

Contributions

Dorothy Ammons: Dorothy created the SCORE (2.0) email, Google Cloud Run account and
server, and the Firebase account. She connected the accounts to the Flask API. She replaced
the entirety of the backend files with Flask endpoints. She updated the frontend end files to
interact with the backend.

Shamik Bera: Shamik created the presentation slides and the Milestone Two Evaluation
document. He tested the progress of the Flask API connected with the Google Cloud Run
account, server, and Firebase account. He checked whether the frontend files successfully

interacted with the backend. He also replaced the rust server with Python that includes Flask
and connected the commands to the backend.

Patrick Kelly: Patrick developed and implemented the MOSS similarity detection prototype for
the SCORE 2.0 backend. He built a Python-based system to analyze student submissions and
generate a similarity matrix showing how closely each file matched others. He created a new
Flask API route (/api/moss/demo) that returns the results in JSON format, allowing future
frontend integration. Patrick successfully tested the endpoint locally with sample submissions,
confirmed working similarity percentages, and prepared the foundation for connecting real
MOSS reports in the next milestone.

Rak Alsharif: Rak developed and tested the initial LLM-based Al detection module for
S.C.O.R.E. (2.0). He implemented a Python baseline model that analyzes student code and
predicts the probability that a submission was generated by Al. The detector extracts key
text-based and structural features such as docstrings, comment ratios, average line length, and
Al-related keywords. Additionally, he contributed ideas for how this Al detection functionality
could later be integrated into the Flask backend and displayed to professors in the web
interface.

Next Milestone

Task Dorothy Patrick Shamik Rak
1. Finalize backend 100% 0% 0% 0%
and databases

2. Set up hosting with 100% 0% 0% 0%
Google Cloud Run

3. Add the LLM for Al 0% 0% 0% 100%
detection to the web

application

4. Add the MOSS 0% 100% 0% 0%
functionality to the web

application

5. Add the rubric page | 25% 25% 25% 25%

and functionality

6. Add the import 0% 0% 100% 0%
functionality for rosters

7. Add the export 0% 0% 100% 0%
functionality for grades

Date(s) of meeting(s) with Faculty Advisor/Client during the current milestone:

10/27/2025

Faculty Advisor feedback on each task for the current Milestone

Faculty Advisor Signature: Date:

Evaluation by Faculty Advisor

Faculty Advisor: detach and return this page to Dr. Chan (HC 209) or email the scores to
pkc@cs.fit.edu

Score (0-10) for each member: circle a score (or circle two adjacent scores for .25 or write down
a real number between 0 and 10)

Dorothy 0 1 2 3 4 5|55, 6 |65| 7 |75| 8 (85| 9 |95 10
Ammons

Patick | 0 |1 |2 | 3| 4|5 |55|6 |65|7|75|8 859 95|10
Kelly

Shamik 0 1 2 3 4 5|55, 6 (65| 7 75| 8 (85| 9 |95 10
Bera

Rak 0 1 2 3| 4 5|55, 6 |65 7 |75 8 [85| 9 (95| 10
Alsharif

Faculty Advisor Signature: Date:

